Analytical study on the influence of distributed beam vertical loading on seismic response of frame structures
نویسندگان
چکیده
Typically, beams that form part of structural systems are subjected to vertical distributed loading along their length. Distributed loading affects moment and shear distribution, and consequently spread of inelasticity, along the beam length. However, the finite element models developed so far for seismic analysis of frame structures either ignore the effect of vertical distributed loading on spread of inelasticity or consider it in an approximate manner. In this paper, a beam-type finite element is developed, which is capable of considering accurately the effect of uniform distributed loading on spreading of inelastic deformations along the beam length. The proposed model consists of two gradual spread inelasticity sub-elements accounting explicitly for inelastic flexural and shear response. Following this approach, the effect of distributed loading on spreading of inelastic flexural and shear deformations is properly taken into account. The finite element is implemented in the seismic analysis of reinforced concrete (R/C) frame structures with beam members controlled either by flexure or shear. It is shown that to obtain accurate results the influence of distributed beam loading on spreading of inelastic deformations should be taken into account in the inelastic seismic analysis of frame structures.
منابع مشابه
Effect of column-foundation connection stiffness on seismic performance of rocking steel braced frame
Residual drifts after severe earthquakes interrupt serviceability of buildings. Retrofitting of such buildings is in many cases very difficult and consumes lots of time and money. Recently, there are some attempts to develop the seismic design procedures to not only satisfy life safety criteria but also lead to more economical buildings. One of these modern methods of improving seismic performa...
متن کاملEvaluation of Seismic Response of Concrete Structures Reinforced by Shape Memory Alloys (Technical Note)
Shape memory alloys (SMAs) are unique smart materials that have many advantages, such as ability to resist large strains without leaving residual strains and ability to recover original form. However, the high costs of SMAs have limited their usage. This paper evaluates the behavior of concrete structures equipped with SMAs in an optimal manner as they are being used along the plastic hinge of ...
متن کاملPerformance Evaluation of Curved-TADAS Damper on Seismic Response of Moment Resisting Steel Frame
In this study, the performance of triangular added damping and stiffness (TADAS) dampers combined with curved dampers (Curved-TADAS damper) is evaluated in moment resisting steel frame (MRSF). These dampers are passive and install in the beam-column connection region. Variable parameters of this study involve the width of curved damper (50, 75 and 100 mm), the thickness of TADAS damper (5 and 1...
متن کاملNEW RCS Frame Connection in Structures
Hybrid moment frame come together with reinforced concrete columns with structural steel beams (RCS). This Composite system provides several key advantages over current steel or concrete moment resisting frame. Past studies have shown this system to be efficient in both design and building stage while able to keep sufficient strength and necessary ductility in seismic zone.Although past researc...
متن کاملDynamic Response of Submerged Vertical Cylinder with Lumped Mass under Seismic Excitation
An analytical approach is presented to assess the response of offshore structures under seismic excitation. This paper evaluates the impacts of different fluid field models and the mass of equipment at the top of offshore structure which is simulated as lumped mass on the responses of offshore structures. To do this, two and three dimensional fluid field models are developed. In three dimension...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015